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ABSTRACT �-Lactamases, the major resistance determinant for �-lactam antibiotics in
Gram-negative bacteria, are ancient enzymes whose origins can be traced back millions
of years ago. These well-studied enzymes, currently numbering almost 2,800 unique pro-
teins, initially emerged from environmental sources, most likely to protect a producing
bacterium from attack by naturally occurring �-lactams. Their ancestors were presum-
ably penicillin-binding proteins that share sequence homology with �-lactamases pos-
sessing an active-site serine. Metallo-�-lactamases also exist, with one or two catalytically
functional zinc ions. Although penicillinases in Gram-positive bacteria were reported
shortly after penicillin was introduced clinically, transmissible �-lactamases that could hy-
drolyze recently approved cephalosporins, monobactams, and carbapenems later be-
came important in Gram-negative pathogens. Nomenclature is based on one of two ma-
jor systems. Originally, functional classifications were used, based on substrate and
inhibitor profiles. A later scheme classifies �-lactamases according to amino acid se-
quences, resulting in class A, B, C, and D enzymes. A more recent nomenclature com-
bines the molecular and biochemical classifications into 17 functional groups that de-
scribe most �-lactamases. Some of the most problematic enzymes in the clinical
community include extended-spectrum �-lactamases (ESBLs) and the serine and metallo-
carbapenemases, all of which are at least partially addressed with new �-lactamase in-
hibitor combinations. New enzyme variants continue to be described, partly because of
the ease of obtaining sequence data from whole-genome sequencing studies. Often,
these new enzymes are devoid of any phenotypic descriptions, making it more difficult
for clinicians and antibiotic researchers to address new challenges that may be posed by
unusual �-lactamases.

KEYWORDS ESBL, MBL, �-lactam, �-lactamase, carbapenemase, cephalosporinase,
penicillinase

One of the most studied enzyme families is the group of enzymes known as
�-lactamases, with more than 28,900 citations in Medline (https://www.ncbi.nlm.nih

.gov/pubmed/). These enzymes, whose most obvious role is to inactivate �-lactam
antibiotics, have driven research in academic laboratories since the early 1940s (1, 2).
Perhaps more importantly, they have been responsible for scores of pharmaceutical
research programs that have attempted to find ways to protect effective antibiotics
from destruction. �-Lactamases provide intellectual challenges for academic investiga-
tors with their deceptively simple mechanisms of action, as enzymes whose hydrolysis
activity approaches that of a “fully efficient enzyme” with diffusion-limited reaction
rates (3). Attempts to provide economically viable anti-infective agents that can cir-
cumvent the action of these enzymes have yielded substantial economic rewards to
successful pharmaceutical companies. As a result, the safe and effective �-lactam
antibiotics have become one of the most widely prescribed classes of antibacterial
agents (4). Many review articles have been published about various aspects of these
intriguing enzymes (5–11), but they have tended to focus on narrowly targeted sets of
�-lactamases. In this minireview, a short history of the �-lactamases is presented,
emphasizing key points that have driven both academic and pharmaceutical science
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over the past 75 years. High points in their history will be discussed, based on the
“Table of Firsts” shown as Table 1. This history is not meant to be a comprehensive
review of all the current literature on �-lactamases but is meant to tell a story about
where these enzymes came from, how they have driven antibiotic discovery programs,
and what challenges they pose for today.

TOPLINE VIEW OF �-LACTAMASES

�-Lactamases are versatile enzymes with a limited range of molecular structures
found in a diversity of bacterial sources. Their commonality is the ability to hydrolyze
chemical compounds containing a �-lactam ring. As shown in Fig. 1, they have been
classified biochemically into two broad divisions according to the mechanism by which
they perform hydrolysis, either through the formation of an acyl enzyme with an
active-site serine (Fig. 2) (12) or via a hydrolytic reaction facilitated by one or two
essential zinc ions in the active sites of metallo-�-lactamases (MBLs) (13). After se-
quence analyses became available for key �-lactamases, four molecular classes, A, B, C,
and D, were eventually assigned based on molecular size and homology between
active-site amino acid motifs (14–16). However, biochemical differences between peni-
cillinases and cephalosporinases had been recognized well before sequences were
available (17), and known �-lactamases were distinguished based on functional capa-
bilities related to substrate and inhibitor profiles (Table 2). Early classification schemes
relied upon relative hydrolysis rates of penicillins and early cephalosporins, together
with the enzymatic response to protein-modifying agents (18, 19). As additional
substrates and inhibitors were introduced into clinical practice and gene sequencing
became inexpensive and routine, both molecular and functional characteristics were
combined into a more comprehensive classification scheme (20, 21). Today, at least 17
functional groups associated with the four molecular classes have been distinguished
(20), with the major groups shown in Fig. 1. Enzymes are still differentiated with respect
to the relative hydrolysis of the �-lactam substrates, penicillins, cephalosporins, car-
bapenems, and monobactams. Further differentiation is possible based on reactions
with the class A �-lactamase inhibitor clavulanic acid (22), the broad-spectrum serine
�-lactamase inhibitor avibactam (23), and the metal ion chelator EDTA to identify MBLs
(24).

�-LACTAMASE ORIGINS

The antibacterial effect of a �-lactam results in inhibition of the growth of replicating
bacteria by acylating an active-site serine in essential penicillin-binding proteins (PBPs)
(25, 26). During the terminal stages of cell wall biosynthesis, these enzymes are thus
prevented from effecting the cross-linking of peptide chains to form peptidoglycan,

TABLE 1 Table of Firsts: the dates, organisms, and locations of the first of a series of �-lactamase-producing isolates with long-term
clinical significance

Original �-lactamase name
(currently recognized name)

Yr of first
verified isolation Organism Location

First description
in literature Reference(s)

Penicillinase (chromosomal AmpC) 1940 Bacillus coli (Escherichia coli) England 1940 1
Penicillinase 1942 Staphylococcus aureus England 1942 65
OXA 1962 Salmonella enterica serovar

Typhimurium, Escherichia colia

England 1965 87, 215
1967

TEM-1 1963 Escherichia coli Greece 1965 85
SHV-1 1972 Klebsiella pneumoniae Unknown 1972 216
Transferable ESBL (SHV-2) Pre-1983 K. pneumoniae Germany 1983 217
Serine (class A, group 2f)

carbapenemase (SME-1)
1982 Serratia marcescens England (London)

USA (Minnesota)
1990 148, 150

1985 1986
Plasmid-encoded AmpC (MIR-1) 1988 K. pneumoniae USA (Massachusetts) 1990 141
Plasmid-encoded MBL (IMP-1) 1988 Pseudomonas aeruginosa Japan 1991 151
Inhibitor-resistant TEM (TEM-30) 1991 E. coli France (Paris) 1994 118
KPC-type (KPC-2) 1996 K. pneumoniae USA (North Carolina) 2000 158
NDM-1 2006 K. pneumoniae India (New Delhi) 2009 175, 176
aAnderson and Datta described a Salmonella Typhimurium isolate from 1962 that later was confirmed to produce the OXA-2 enzyme (215). Egawa et al. described an

E. coli isolate in 1967 that produced the OXA-1 enzyme (87).
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resulting in cell death. Tipper and Strominger proposed similarities between the
structures of penicillin and D-Ala-D-Ala, the terminal amino acids of the nascent
acetylmuramyl-pentapeptide fragment, to explain the antimicrobial activity of penicillin
(27). Because the majority of �-lactamases contain an active-site serine that also can be
acylated by �-lactam molecules, it is not unexpected to find mechanistic and structural
similarities between the two sets of enzymes (28, 29). Fisher and Mobashery have
cogently outlined a history of studies demonstrating the biochemical commonality
between the two acyl enzymes (30). Molecular modeling of various serine �-lactamases
and PBP structures has demonstrated three-dimensional similarities with conserved
folding patterns and preservation of topology at the active site, in spite of low amino
acid identities (28, 31).

The general reaction mechanism for both enzymes is shown in Fig. 2. It is commonly
assumed that PBPs were the precursors of the �-lactamases, with the k3 rate for
deacylation increased dramatically for �-lactamases, compared to PBPs that exhibit a
fast acylation step (k2) compared to a slow deacylation step. Formation of the PBP-acyl

FIG 1 Molecular and functional relationships among �-lactamases (adapted from references 20 and 201 with permission). AV, avibactam;
CA, clavulanic acid; Cb, carbapenem; Cp, cephalosporin; E, expanded-spectrum cephalosporin; M, monobactam; P, penicillin.

FIG 2 General reaction mechanism for binding of a �-lactam substrate (S) to a PBP (E) or a serine
�-lactamase (E). Reversible formation of a Michaelis complex (E · S) which proceeds to a stable acyl
enzyme (E—S) caused by reaction with the active-site serine. Hydrolysis occurs to form the microbio-
logically inactive ring-opened �-lactam (P) and either enzymatically active PBP (slow hydrolysis of acyl
enzyme) or �-lactamase (Bla, high hydrolysis rate).
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enzyme complex is considered by many to be an irreversible reaction compared to the
lifetime of a bacterial cell, with half-lives of acyl enzymes ranging from a relatively short
9 to 15 min for Pseudomonas aeruginosa PBP2 and PBP3 with amdinocillin or aztreonam
(32, 33) to a half-life of more than 24 h for nitrocefin with PBP2a from Staphylococcus
aureus (34). Some PBPs may have evolved to function as weak �-lactamases with a slow
turnover of the �-lactam substrate (28); for example, cefotaxime deacylation rates are
70- to 80-fold higher for PBP2x variants than that for the wild-type enzyme in Strep-
tococcus pneumoniae (35).

�-Lactamases are ancient enzymes that existed even in the absence of the pressure
of therapeutic antibiotics. In 1979, Hamilton-Miller claimed that “penicillinase was born
on December 28, 1940” (36), the date Abraham and Chain reported that a bacterial
enzyme was capable of destroying penicillin (1). Little did he know that modern
phylogenetic analyses have estimated the age of serine �-lactamases to be more than
2 billion years old (37), with plasmid-encoded �-lactamases appearing millions of years
ago (38). Recent explorations of remote environmental niches have identified func-
tional �-lactamase-like activity in locations, such as a region of the Lechuguilla Cave in
New Mexico (USA) estimated to have been isolated for over 4 million years (39).
Sampling of the cave resulted in the growth of 93 bacterial strains, with as many as 62%
capable of hydrolyzing �-lactams. However, no sequences of known �-lactamase
sequences were identified. The same group also examined metagenomic DNA from
30,000-year-old permafrost sediments east of Dawson City, Yukon (Canada) (40). In
these samples, deduced amino acid sequences with 53% to 84% identities to the
ubiquitous TEM �-lactamases clustered into the following two enzyme groups: (i)
�-lactamases from various streptomycetes, and (ii) uncharacterized �-lactamase-like
hydrolytic proteins. In a slightly younger sample of cold-seep sediments of Edison
seamount (Papua, New Guinea) estimated to be 10,000 years old, 30 clones produced
genes encoding �-lactamases primarily belonging to enzymes in the TEM family (41).
Additional metagenomic analyses of ancient and naive environmental samples identi-
fied a novel metallo-�-lactamase (MBL), isolated from a 14th century bone sample, with
an unusual substrate profile unlike that of other known MBLs; its sensitivity to clavu-
lanic acid and to carbapenems suggested that it may have emerged to provide
resistance to currently unknown �-lactam-containing molecules (42). In addition to
these �-lactamase-type enzymes in historical samples, �-lactamase production has
been identified in multiple remote pristine Antarctic soil samples (43), in ice cores in
glaciers outside Antarctica (44), and in remote South American populations that have
rarely, or never, been treated with commercial �-lactam antibiotics (45, 46). Curiously,
an IMP MBL, a somewhat infrequent contributor to �-lactam resistance in contempo-
rary clinical isolates (47), was found in approximately half of the glacial samples but not
from Greenland or Antarctica (44). �-Lactamases have also been identified in fungi,
where they are suspected of serving to inactivate plant or microbial naturally occurring
�-lactam compounds (48). However, there are still organisms with no confirmed
�-lactamases, notably S. pneumoniae, Streptococcus pyogenes, Helicobacter pylori, My-
coplasma spp. and the Chlamydiae, possibly due to the production of homologous
enzymes with the ability to inactivate �-lactams (49).

The history of �-lactamases can hardly be written without referring to the history of
�-lactam-containing antibacterial agents, including the penicillins, cephalosporins, car-
bapenems, and monobactams, all of which contain a 4-membered 2-azetidinone ring
(50). Although most of the �-lactam-containing agents in use today are synthetic or
semisynthetic molecules, �-lactams as therapeutic agents originate from naturally
occurring sources, identified initially because of their antibacterial activities in agar-
based assays. Penicillin (penicillin G or benzylpenicillin) was first recognized because it
prevented the growth of staphylococci on a petri dish contaminated with the common
mold Penicillium notatum (51). Cephalosporin C, the starting point for the cephalospo-
rins, was isolated from sewage sludge in Sardinia (52). Carbapenems were found in
various �-lactam-producing actinomycetes from soil samples (53), and monobactams
were isolated from bacteria in New Jersey soil and water samples (54). All these
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iterations of unmodified �-lactams existed in natural environments and placed selective
pressure on the neighboring bacteria to evade a milieu of deleterious agents. When
�-lactam-producing organisms compete with nonproducing bacteria in the same
environmental niche, survival strategies are quickly developed. Because bacteria, pos-
sibly the first living organisms, have existed for 2.5 to 4 billion years (55, 56), there has
been a long incubation period for naturally occurring �-lactam biosynthesis to be
perfected and for neighboring bacteria to learn how to survive in the presence of these
molecules. Interestingly, mammalian enzymes, including serum proteins (57) and renal
dehydropeptidase (dipeptidase) (58), are also capable of hydrolyzing �-lactams.

�-LACTAMASES IN GRAM-POSITIVE BACTERIA

Resistance to �-lactams can be mediated by multiple mechanisms. Because it is in
the best interest of the bacteria to maintain active PBPs, the first line of defense would
appear to be for PBPs to alter their affinities for �-lactams while maintaining their
physiological function (28). This approach has been utilized most effectively by Gram-
positive bacteria, where a primary resistance mechanism has been acquisition of PBPs
with decreased affinity for common �-lactams (59). However, it took over 20 years of
penicillin usage before clinical isolates of penicillin-resistant S. pneumoniae (60, 61) and
penicillin/methicillin-resistant S. aureus (MRSA) were reported as a result of production
of low-affinity PBP variants (62–64). Instead, penicillinases, or �-lactamases that hydro-
lyze penicillin, emerged as the initial resistance mechanism in S. aureus to challenge the
therapeutic use of this agent (65). The drug was used more extensively and promis-
cuously to treat nosocomial streptococcal infections previously associated with high
mortality (66), but, as collateral damage, staphylococci initially fully susceptible to
penicillin rapidly developed resistance as a result of penicillinase production. In a single
English hospital, the percentage of penicillinase-producing staphylococci increased
from 14% in 1946 to 59% in 1948 (67) and up to 80% in 1953 (66). More recently, a 2013
study of U.S. clinical isolates showed that 86.5% of all S. aureus isolates (75.6% of
methicillin-susceptible isolates) contained the penicillinase gene blaZ (68), indicating
that a subpopulation of methicillin-susceptible staphylococci has survived in the ab-
sence of either a low-affinity PBP or the production of penicillinase. A transferable
penicillinase was also reported in a few clinical isolates of Enterococcus faecalis in the
1980s (69), with identical or closely homologous amino acid sequences as staphylo-
coccal penicillinases (70). A genomic analysis in 2005 demonstrated at least two
divergent origins (71). However, penicillinase-producing enterococci have not been
observed for the past decade and appear to have disappeared from these pathogens
(72). Another analysis of recent genomic data noted similarities among a set of 88
class A �-lactamases from Gram-positive bacteria and two enzymes from Gram-
negative bacteria, the ROB-1 penicillinase from Haemophilus influenzae, and the
ACl-1 enzyme from Acidaminococcus fermentans (73), possibly due to “trans-Gram
transfer” of �-lactamase genes between Gram-positive and Gram-negative bacteria.

In addition to the observed penicillinase production in Gram-positive clinical iso-
lates, enzymes with �-lactam-hydrolyzing properties from numerous environmental
bacilli were used by theoretical enzymologists as prototypical biochemical examples of
well-behaved enzymes (74, 75). Early studies with �-lactamases from Bacillus cereus (76),
Bacillus anthracis (77), and Bacillus licheniformis (78) provided tools on which future
biochemical studies of �-lactamases were based. Assay development, enzyme purifi-
cation, induction properties, and identification of a metal-dependent �-lactamase from
these bacilli were activities critical to the establishment of �-lactamases as important
enzymological entities (75, 79, 80). It is notable that the classical structural classification
of �-lactamases initially proposed by Ambler in 1980 was based on five known amino
acid sequences, four of which were from enzymes originating in Gram-positive bacteria.
These included three class A penicillinases, PC1 from S. aureus, penicillinase from B.
licheniformis 749C, and the B. cereus 569/H �-lactamase I. The only class B metallo-�-
lactamases (MBL) that had been sequenced and studied in any detail at the time was
the zinc-containing B. cereus 569/H �-lactamase II (14). The first report of �-lactamases
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other than class A and B enzymes in Gram-positive bacilli described a set of oxacillin-
hydrolyzing (class D) penicillinases from a set of environmental strains in 2016 (81).

�-LACTAMASES IN GRAM-NEGATIVE BACTERIA
1940 to 1985 and the emergence of modern �-lactamases. In Gram-negative

bacteria, �-lactamases have played a critical clinical role and have served as the primary
resistance mechanism for the �-lactam antibiotics. The first enzyme with �-lactamase
activity reported in the literature in 1940 was from Bacillus coli (1), now assumed to be
the class C, AmpC chromosomal cephalosporinase from Escherichia coli (Table 1). As
�-lactam resistance began to be more frequently recognized in Gram-negative patho-
gens, it was shown that many enteric bacteria and P. aeruginosa produced species-
specific inducible chromosomal �-lactamases (82, 83). However, it is the mobile
�-lactamases in Gram-negative bacteria that have created a more insidious threat to
the �-lactams. Although plasmid-encoded penicillinases were first reported in staphy-
lococci (84), the genes encoding these enzymes were not readily transferred to other
species, other than for the few enterococcal strains that appeared in the 1980s carrying
a staphylococcal penicillinase gene (69). In contrast, transferable genetic elements
encoding a wide variety of �-lactamases became the most prevalent mechanism
leading to the emergence of �-lactam resistance among Gram-negative bacteria, with
few species barriers existing for their transmission. When �-lactamases on “R-factors”
were first described in 1965 (85), only a limited number of these enzymes were
identified, related either to the transferable penicillinase on RTEM (86), now known to be
TEM-1, or to a transferable enzyme that hydrolyzed cloxacillin (87), an enzyme in the
OXA family of �-lactamases. These mobile bla genes were soon disseminated among
most enteric bacteria (88). We now understand that �-lactamase-encoding genes can
be acquired horizontally by different means but mainly by plasmid acquisition. Gene
mobilization mechanisms may include genetic elements, such as transposons, gene
cassettes, integrons, and insertion sequences (89–91).

Sawai et al. in 1968 (18), Jack and Richmond in 1970 (92), and Richmond and Sykes
in 1973 (19) attempted to group the known �-lactamases from Gram-negative rods in
a meaningful way based on biochemical properties and functionality. Over time, these
approaches have seen considerable refinement. As shown in Table 2, a limited number
of different �-lactamases served as the starting point for a logical classification scheme
based on biochemical characteristics.

The consensus was that the �-lactamases known by the mid-1970s constituted the
range of �-lactam-hydrolyzing enzymes in relevant Gram-negative bacteria. The intro-
duction of isoelectric focusing (IEF) (82, 93) aided by the ease of �-lactamase detection
using nitrocefin as a colorimetric activity indicator (94) allowed investigators to ana-
lyze bacterial extracts for the presence of �-lactamase activity with minimal effort.
Until the mid-1980s, it was possible to make a reasonable estimate of the number
of �-lactamases produced per strain and the putative identity of an enzyme, based
on isoelectric points from IEF gels. Biochemical properties were determined using
purified enzymes; published molecular sizes, many of which were incorrect, were
based on data obtained from gel exclusion chromatography, and amino acid
composition was deduced from peptide analyses of purified proteins in a process
that took months to obtain a single enzyme sequence. This was the environment in
which the first definitions of molecular classes A, B, and C emerged (14, 15). Eventually,
class D was added, based on nucleotide sequencing of the blaPSE-2 gene (16), and it
represents the most diverse of the molecular classes.

During the late 1970s and early 1980s, a number of surveillance studies were
conducted to assess �-lactamase production in Gram-negative bacteria. In a set of five
studies published between 1979 and 1985, the distribution of �-lactamases from
almost 1,800 ampicillin-resistant enteric bacteria were evaluated, based primarily on IEF
profiles (95–99). The TEM-1 and TEM-2 penicillinases were the most common enzymes,
with an average of 63% (range, 42 to 85%) of the isolates producing one of these
enzymes. In these isolates, an enzyme designated SHV-1 was produced by an average
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of 9.9% of the isolates (range, 1.7 to 24.0%), primarily as a chromosomal enzyme in
Klebsiella pneumoniae, with OXA enzymes produced on average at 7.8% (range, 0.4 to
15.4%). As was common in the early years of �-lactam resistance due to transferable
�-lactamases, few isolates produced more than one plasmid-encoded enzyme, with
multiple transferable �-lactamases generally reported in no more than 3% of the
isolates. An exception was a set of Klebsiella isolates from a 1983 Spanish study in which
30% of the strains produced at least two plasmidic enzymes, primarily combinations of
SHV-1 with TEM-1 or TEM-2 (97). This compilation set the stage for the future evolution
of �-lactamases.

The facile transmission of the R-factor encoded “RTEM” (TEM-1) into a multiplicity of
Gram-negative pathogens is associated with triggering one of the most productive
periods of antibiotic development, especially for the �-lactams. In 1974, reports of
ampicillin resistance in meningitis patients infected with Haemophilus influenzae led to
the discovery that these strains produced an acquired TEM-type �-lactamase (100). At
that time, ampicillin was the preferred treatment of sepsis or pediatric meningitis
caused by H. influenzae type b, and the new TEM-producing strains were no longer
responsive to therapeutic levels of ampicillin (101). This observation was followed quite
soon by the alarming finding that the TEM �-lactamase was freely being transferred
into Neisseria gonorrhoeae by conjugal mating when a 24.5-kDa gonococcal plasmid
was present (102). Two geographically distinct plasmids of different sizes emerged
almost simultaneously, each of which encoded the blaTEM gene in gonococci (103).
Epidemiologically, this was attributed in part to the promiscuity of naval populations
and prostitutes who were exchanging organisms with R-factor-associated TEM enzymes
during trips between the Philippines and Europe or between western Africa and
England (104). Prior to this, a single dose of penicillin had been demonstrated to cure
�95% of the cases of gonorrhea (105), so the loss of an effective, safe, and inexpensive
drug was devastating (106). To add insult to injury, the penicillin-resistant organisms
originating from the Asia-Pacific region also were tetracycline resistant due to the tet(M)
gene that appeared to travel on a different plasmid from blaTEM. This loss of useful
therapeutic approaches to a widespread venereal disease resulted in panic, not only
from military organizations operating in the western Pacific, but also from operators of
clinics designed to treat outpatients with a single injection of either penicillin or
tetracycline. As a result of concerns from the medical community (107), pharmaceutical
companies quickly took notice and increased research efforts to identify either inhib-
itors of the TEM �-lactamase or molecules that were stable to �-lactamases from
Gram-negative pathogens (4).

Because of the relatively small number of known �-lactamases in the mid-1970s,
TEM-stable molecules, or TEM inhibitors, were evaluated for antimicrobial activities
against a few standard �-lactamases and �-lactamase-producing strains that were
common in multiple pharmaceutical companies. The enzymes studied were those that
were easily purified in large amounts and that could be assayed with relatively rapid
spectrophotometric methods (79). Although TEM-1 was the primary target for many
research groups, other enzymes in the testing panels often included a class A penicil-
linase from S. aureus, a class C cephalosporinase from Enterobacter cloacae (frequently
the P99-hyperproducing strain), and the class A K1 enzyme from Klebsiella pneumoniae
(now Klebsiella oxytoca), the earliest extended-spectrum �-lactamase (ESBL) that served
as the most stringent enzyme to test the stability of oxyimino-cephalosporins and
monobactams (22, 108). As a result of this research, 24 new �-lactam-containing agents,
including 15 cephalosporins, were approved by the U.S. Food and Drug Administration
(FDA) in the 1980s (109). In addition to the TEM-stable oxyimino-substituted cephalo-
sporins (e.g., cefotaxime, cefuroxime, ceftriaxone, and ceftazidime), monobactam (az-
treonam) and carbapenem (imipenem), two �-lactamase inhibitors targeting the TEM
�-lactamase and staphylococcal penicillinases, were also approved between 1981 and
1986 in three different combinations, as follows: clavulanic acid with amoxicillin (orally
administered) or ticarcillin (parenterally administered), and sulbactam with ampicillin as
an intravenous drug (4).

Minireview Antimicrobial Agents and Chemotherapy

October 2018 Volume 62 Issue 10 e01076-18 aac.asm.org 8

http://aac.asm.org


1985 to 2000, new �-lactams as drivers of resistance. When microbiologists were
asked to predict how resistance would develop to these new agents, the most common
response involved the selection of derepressed AmpC mutants from the Enterobacte-
riaceae and P. aeruginosa, bacteria known to have inducible cephalosporinases whose
hyperproduction could be selected clinically by the oxyimino-cephalosporins, or
expanded-spectrum cephalosporins (110). E. cloacae in particular, as well as Citrobacter
spp. and P. aeruginosa (111), were reported to be prone to this kind of selection, with
clinical reports of 25% of patients treated with ceftazidime exhibiting resistance to the
drug as a result of a derepressed AmpC enzyme in E. cloacae (112). However, outbreaks
of cefotaxime- or ceftazidime-resistant Enterobacteriaceae reported in Clermont-
Ferrand, France, in the mid-1908s heralded a different broad-based resistance to these
new agents (113). These resistant isolates were the result of transferable �-lactamases,
now known as ESBLs, which were capable of hydrolyzing the new �-lactams substituted
with an oxyimino side chain, e.g., aztreonam and the third-generation or expanded-
spectrum cephalosporins. Initially, ESBLs were derived from the common SHV-1, TEM-1,
or TEM-2 �-lactamases and differed from the parental enzymes by no more than two
or three amino acids in the coding region (http://www.lahey.org/Studies/temtable.asp)
(5). In both Europe and the United States where these enzymes were identified almost
simultaneously in the late 1980s, the prominent ESBLs were almost all SHV or TEM
variants (114–117). Early ESBL-producing isolates were resistant to penicillins and most
cephalosporins but susceptible to �-lactamase inhibitor combinations, a differentiating
feature used to define ESBL producers phenotypically. As a result of the selective use
of agents, such as amoxicillin-clavulanic acid and piperacillin-tazobactam, “inhibitor-
resistant” TEM enzymes (IRTs) (118), followed by inhibitor-resistant SHV enzymes (119)
emerged. Curiously, organisms that produced many of these enzymes were resistant to
penicillin combinations with clavulanic acid or tazobactam but were susceptible to
cephalothin (120). Although these enzymes have not played a major role in resistance
to the inhibitor combinations in most parts of the world, a recent report from Spain
indicates that IRTs are still prevalent in Spanish E. coli isolates, from both community
and hospital sources (121).

Over the past decade, the common TEM, IRT, and SHV variants have diminished in
numbers, only to be replaced by the CTX-M family of ESBLs, a dominating contributor
to the multidrug-resistant profile in many Gram-negative bacteria (122, 123). In contrast
to the TEM and SHV variants that arose from prevalent European and North American
plasmid-encoded penicillinases, the CTX-M enzymes are closely related to chromo-
somal �-lactamases from the genus Kluyvera (124–126), a genus rarely associated with
clinical disease (127). SHV ESBL variants are still identified, but few new TEM-related
enzymes are now seen. Only recently have tazobactam-resistant CTX-M �-lactamases
been identified, unusual enzymes that are still inhibited by clavulanic acid (128, 129).
The family of GES enzymes was initially believed to represent another set of ESBLs, but
some GES variants with single point mutations have acquired the ability to hydrolyze
carbapenems (130, 131). The numbers of enzymes in major �-lactamase families are
reflected in Table 3, where the high rate of increase in TEM and SHV novel naturally
occurring variants from the 1990s/early 2000s has diminished over time compared to
other families. In current isolates, multiple ESBLs may be produced in the same
organism, together with enzymes from any of the other molecular classes (132–134).

Class C, AmpC-related, cephalosporinases also played a role in the resistance to
cephalosporins, cephamycins, and, to a lesser extent, to carbapenems in both enteric
bacteria and nonfermentative pathogens (135–137). Until the late 1980s, they were
most worrisome when derepressed AmpC production resulted in high levels of
chromosomal/species-specific enzymes. Even enzymes with poor hydrolysis rates for
these �-lactams could inactivate enough of the drug to cause clinical resistance,
particularly in strains with decreased permeability or increased efflux (138–140). How-
ever, when plasmid-encoded AmpC-type enzymes on high-copy-number plasmids
began to emerge by 1990 (141), a new threat was introduced, as these enzymes were
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freely transferable among species, resulting in increased resistance to multiple �-lactam
classes, including carbapenems (142).

As ESBL-producing isolates became a more prominent segment of the Gram-
negative population in hospitalized patients, carbapenems were used more frequently
in those health care centers with large outbreaks of cephalosporin-resistant infections
(143). This often occurred when isolates produced multiple �-lactamases and a
�-lactamase inhibitor combination was not potent enough to overcome all the en-
zymes in the resistant isolate (144). Selection of carbapenem-resistant pathogens was
the fully predictable consequence. Resistance to carbapenems or alternative �-lactam-
containing agents emerged due to a multiplicity of the following factors: altered PBPs
in Acinetobacter spp. (145), overproduction of plasmid-encoded class C cephalospori-
nases together with porin deficiencies in the Enterobacteriaceae (144), and the produc-
tion of carbapenemases, both chromosomal and plasmid encoded (132).

Carbapenemases remain the major resistance mechanism for carbapenems in the
Gram-negative bacteria. Initially they were regarded as nontraditional clinically irrele-
vant zinc-containing �-lactamases occurring only in the occasional Stenotrophomonas
(Pseudomonas) maltophilia clinical isolate (146) and in isolates of Bacillus spp. (other
than B. anthracis) that are infrequent causes of nongastrointestinal human infections
(147). However, class A carbapenemases, such as the species-specific chromosomal SME
enzymes in Serratia marcescens, began to be identified intermittently in Europe (148,
149) and the United States (150) in the 1980s. Plasmid-encoded MBLs emerged in Japan
in 1990 with the IMP family of enzymes (151) and in Italy in 1997 with the VIM
�-lactamases (152), causing some to predict a global epidemic of multidrug-resistant
MBL-producing Gram-negative bacteria. Although the IMP and VIM MBL families began
to expand after 2000 (Table 3), outbreaks associated with these enzymes have tended
to be small, limited in time, and localized to specific geographical regions (153–157).

2001 to 2018, major epidemic �-lactamases. Identification of the plasmid-
encoded KPC serine carbapenemases in the early 2000s (158, 159) soon led to major
epidemics caused by carbapenemase-producing Enterobacteriaceae in many areas of
the world (160–162). These enzymes can appear in almost any Gram-negative patho-
gen (9, 163, 164), although they are predominantly identified in K. pneumoniae. The
most prominent of the KPCs are KPC-2 and KPC-3, frequently found in K. pneumoniae
clonal complex 258 (CC258) (165, 166). Within CC258, the common sequence type 258
(ST258) found in the United States and Europe, are two major clades, clade I associated
with KPC-2 dissemination and clade II associated with KPC-3 (167). KPC-producing

TABLE 3 Increasing numbers of �-lactamases in well-characterized familiesa

Enzyme type Class Functional group

No. in class by yr

1961 1995 2000 2005 2010 2015 2018

CMY C 1 0 1 6 22 64 136 139
PDCb C 1 0 (1) (1) (1) 10 30 226
ADCc C 1 0 0 (1) 7 7 7 81
All TEMs A 2b, 2be, 2br 0 36 86 153 178 219 224
All SHVs A 2b, 2be, 2br 0 6 26 89 134 182 193
CTX-M A 2be 0 2 9 51 103 172 182
KPC A 2f 0 0 0 3 11 22 24
All OXAs D 2d 0 18 28 88 202 498 520
IMP B 3 0 1 3 23 29 48 53
VIM B 3 0 0 2 12 27 41 46
NDM B 3 0 0 0 0 1 12 14

Estimated total of all unique �-lactamases (�13)d 217 309 584 1,003 1,855 2,771
aSome data are from reference 224, as well as from http://www.lahey.org/Studies/ and https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047.
bPDC, Pseudomonas-derived cephalosporinase family, first named in 2009 (136). AmpC pseudomonal cephalosporinases were described as early as 1965 (137). This
family was not included in the Lahey database http://www.lahey.org/Studies/.

cADC, Acinetobacter-derived cephalosporinase, family first named in 2005 (190). The name ADC-1 was assigned to an enzyme first described in 2000 (135). This family
was not included in the Lahey database http://www.lahey.org/Studies/.

dEstimated, based on data from references 18 and 92 that most likely included some of the same enzymes.
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organisms have been associated with high rates of mortality, as high as 51% in patients
with infections caused by colistin-resistant K. pneumoniae strains (168). Other serine
carbapenemases have not become quite as prolific or deleterious as the KPCs. Only the
Serratia-specific chromosomal SME enzymes have occasionally caused small outbreaks
(169). A recent unusual multidrug-resistant S. marcescens isolate was selected during
therapy due to the selection of hyperproduction of both the AmpC and SME chromo-
somal �-lactamases (170).

Until recently, plasmid-encoded MBL dissemination had been a minor threat in most
geographical regions, even in countries that have recorded sporadic outbreaks with
enzymes, such as VIM-1 in Greece (171), IMP-8 in Taiwan (172), and IMP-1 in Japan (173,
174). However, MBLs became more menacing after the NDM-1 zinc-containing carbap-
enemase was identified in 2009 from an isolate originating from New Delhi, India (175).
Retrospective studies have traced the origins of this MBL to at least 2006 (176). In
contrast to the other MBLs, NDM-1 quickly spread worldwide, being the predominant
carbapenemase in the Indian subcontinent, but with major outbreaks also reported in
the Balkans and the Middle East (9, 166). Of great concern is the widespread occurrence
of the blaNDM gene that has been identified in environmental water samples in India
(177, 178).

A third transferable carbapenemase associated with outbreaks is the OXA-48 en-
zyme, originally identified as a class D oxacillinase from Turkey in 2001 (179). This
enzyme, found in multidrug-resistant Enterobacteriaceae, slowly hydrolyzes carbapen-
ems and expanded-spectrum cephalosporins and is poorly inhibited by most
�-lactamase inhibitors, with the exception of avibactam (180). It is most prevalent in the
Mediterranean region and southern Europe. Outbreaks have been reported in France
(181) and Spain (182), where 74% and 32% of the carbapenemases in E. coli and
Citrobacter spp., respectively, were recently identified as OXA-48 (182, 183). Class D
oxacillinases are also frequently found in Acinetobacter spp. and are the primary cause
for carbapenem resistance in those organisms. As Acinetobacter-related infections
increased during the early 2000s, the contributions of the chromosomally encoded
OXA-51 in Acinetobacter baumannii (184) and plasmid-encoded OXA-23, OXA-24/33/40,
and OXA-58 enzymes were more fully appreciated (185). Although multidrug-resistant
Acinetobacter spp. have been associated with a number of outbreaks, the contribution
of �-lactamases to these outbreaks has been contributory, but not necessarily the
driving factor, due to the intrinsic resistance of these pathogens to most antibiotics
(185, 186).

�-LACTAMASE CLASSIFICATIONS

With the variety of unique �-lactamases that have been identified in natural isolates
now exceeding 2,770 (Table 3 and Fig. 3), it is important to have reliable and easily
understandable nomenclature to refer to these enzymes. Beginning with Sawai and
colleagues, who classified �-lactamases as penicillinases or cephalosporinases accord-
ing to substrate profiles (18), other classification schemes arose (Table 2) based
traditionally on the functional characteristics of these enzymes (19). As nucleotide and
amino acid sequences became available, molecular relatedness was added as a defining
characteristic (14–16). One of the most cited classification schemes using functional
group designations was proposed by Bush, initially in 1988 (187), and then in collab-
oration with Jacoby and Medeiros (21), as discussed above. Their updated scheme
described in 2010 (20) has been further expanded, as shown in Fig. 1, with the addition
of avibactam as a differentiating inhibitor to separate serine carbapenemases from
MBLs, potentially a useful diagnostic characteristic in whole-cell phenotypic assays
(188). Fortuitously, assignments to functional groups generally aligned with molecular
classes, although exceptions were noted, particularly with the intrinsically diverse OXA
enzymes (189).

Numbering of variants within �-lactamase families has been a challenge, beginning
with the emergence of numerous ESBLs resulting from point mutations in both
nucleotide and amino acid sequences (5). As a result, in 1996, Jacoby offered to serve
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as the curator for assignments of new allele numbers for naturally occurring plasmid-
encoded ESBLs, with the establishment of the website at http://www.lahey.org/
Studies/. The site was later expanded to include assignments for natural alleles in all
major �-lactamase families containing more than three known variants. Functional
assignments were made for the TEM, SHV, and OXA enzymes if substrate and inhibitor
profiles were available. In 2015, the task of assigning new numbers for novel �-lactamases
was transferred to NCBI (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047), with a
request for phenotypic information and genotype data. Tracking of the LEN, OXY, and
OKP enzyme families in Klebsiella spp. is being curated by investigators at the Institut Pasteur
(http://bigsdb.web.pasteur.fr/klebsiella/klebsiella.html). Bonomo and colleagues have estab-
lished numbering systems for the Acinetobacter-derived cephalosporinases (ADCs)
(190), followed by similar numbering of Pseudomonas-derived cephalosporinases
(PDCs) (136, 191), families whose numbers have increased greatly in the past 5 years as
a result of whole-genome sequencing projects (185) (Table 3 and Fig. 3).

The agreement within the �-lactamase community to provide a unique designation
for each unique (natural) allele has met with criticism from others in the antibiotic
resistance field who advocate that there should be at least a 2% change in nucleotide
or predicted amino acid sequence before a new enzyme or gene name is assigned
(192). However, a single amino acid substitution in a TEM or SHV �-lactamase can alter
its biochemical properties, such that the substrate spectrum is dramatically altered to
provide for an ESBL phenotype (5), or resistance to �-lactamase inhibitors can occur
(118). These enzymes clearly have different functional characteristics and as such
warrant a unique designation (193). A recent attempt to lump ESBLs and carbapen-
emases into a single ESBL category (194) was challenged by many in the �-lactamase
community (195). Although the original intention was to simplify �-lactamase nomen-
clature for the practicing physician, many thought that this would be confusing,
especially in situations in which carbapenems, which are routinely used to treat
traditional ESBL-producing pathogens (196), would not be effective against infections
caused by carbapenemase-producing organisms if carbapenemases were also named
ESBLs.

More recent classification schemes are based on the association between 3-dimensional
structures and functional information, particularly for the class A/group 2 �-lactamases (197–
200). As crystallographic analyses become available for additional �-lactamases, determi-
nation of structure-function relationships will become more common. However, for this
approach to be successful, high-quality phenotypic data must be provided for novel
�-lactamases. The numbers of �-lactamases continue to increase almost exponentially
(see Fig. 3 and reference 201), partly because of easy access to inexpensive and rapid

FIG 3 Increase in numbers of unique, naturally occurring �-lactamases (some data from reference 224 as well as from http://www
.lahey.org/Studies/ and https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047). (A) �-Lactamases enumerated according to molec-
ular classes A, B, C, and D, with the total number of enzymes (all) equal to 2,771. (B) �-Lactamases enumerated according to major
functional groups with their trivial names, AmpC, group 1; ESBLs, group 2be; and carbapenemases, groups 2f and 3.
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gene sequencing. Laboratories now have the ability to identify dozens of “new”
�-lactamase sequences (185), with no functional information provided. Unfortunately,
whole-genome sequencing provides more data than we perhaps need to know. Some
of the genes that are identified as �-lactamase-encoding genes are incomplete, some
are misannotated, and some are not expressed, so that assignments for new alleles are
not aligned with functionality (202). In addition, “�-lactamase” may be included in the
annotation for a new protein sequence that has no �-lactamase hydrolytic capability.
An example is the NCBI annotation for sequences in the metallo-�-lactamase super-
family, a family of more than 6,000 enzymes that includes oxidoreductases, as well as
enzymes which hydrolyze thiol-ester, phosphodiester, and sulfuric ester bonds (203)
but �300 verified MBLs (Fig. 3). Naive investigators may incorrectly assume that this
commonly identified set of sequences signals the presence of an MBL, potentially
triggering aggressive medical treatment in the hospital laboratory. Even for legitimate
enumerations of new �-lactamases based only on sequence data, a lack of functional
data minimizes the usefulness of the information. Attempts by structural biologists to
align structures with function will suffer due to the lack of phenotypic information to
correlate with novel sequences. Although minimally, it is recommended that any novel
�-lactamase gene be transferred to a non-�-lactamase-producing strain and its resis-
tance phenotype confirmed, it is preferable that a novel enzyme be purified and its
biochemical properties determined and then correlated with microbiological properties
in the producing organism (20, 193). Ideally, both genomic and biochemical informa-
tion should be available before classifying enzymes into families (20).

DISCUSSION

Selective pressure from both naturally occurring �-lactams and clinically overused
�-lactam-containing drugs has created an environment in which new �-lactamases
readily emerge, together with maintenance of some of the older, more fit, enzymes.
Recent laboratory studies have demonstrated that conjugal plasmids with antibiotic
resistance genes are stable in multispecies communities over long periods of time, even
in the absence of antibiotic pressure (204). This partially explains the continued
presence of antibiotic resistance genes in apparently naive environments (45, 46) and
the perpetuation of �-lactamase genes encoding common TEM, SHV, and OXA en-
zymes. It is notable that TEM-1 and, to a lesser extent, OXA-1, two of the first known
plasmid-encoded �-lactamases, have not disappeared and are frequently identified in
contemporary, multidrug-resistant, clinical, and environmental isolates (132, 205, 206),
perhaps because of their exquisite ability to hydrolyze inexpensive penicillins that are
still used therapeutically in community settings. However, there is great concern about
environmental contamination in public water supplies by �-lactamase-producing
antibiotic-resistant pathogens. A recent study in Hyderabad, India, in both urban and
rural areas, found that 100% of all water samples collected from bulk drug manufac-
turing facilities and multiple water sources, including those contaminated by sewage
treatment plants, were positive for ESBL genes, and 95% of them contained carbap-
enemase genes, often with multiple genes per sample (e.g., blaOXA-48, blaKPC, and
blaNDM) (178). Several studies have identified environmental sources of carbapenem-
resistant organisms carrying primarily blaKPC and blaVIM genes in hospital drains and
sinks, thereby providing sources for these pathogens to enter water supplies outside
health care centers (153, 207).

One of the most worrisome threats described by the Centers for Disease Control and
Prevention (CDC) is carbapenemase production in recent Gram-negative clinical iso-
lates, especially those enzymes with genes carried on mobile genetic elements (208).
Fortunately, serine carbapenemases are readily inhibited by new �-lactamase inhibi-
tors, including the diazabicyclooctanone (DBO) inhibitors, such as avibactam (209), and
the boronic acid derivative vaborbactam (210), both of which have been recently
approved for marketing in combination with ceftazidime or meropenem, respectively.
These inhibitor combinations allow relatively effective clinical treatment of infections
caused by organisms producing serine carbapenemases (211), thus lowering the risk of
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clinical failures. A combination of avibactam with the MBL-stable monobactam aztreo-
nam is currently in phase 3 clinical trials to treat Gram-negative bacterial infections,
including those with MBL-producing pathogens (https://clinicaltrials.gov/ct2/show/
NCT03329092?term�avibactam&draw�2&rank�19). Although resistance has been re-
ported in patients treated with avibactam-ceftazidime, the numbers are currently small
(212). As can be expected, however, resistance will increase as the new agents are used.
At this time, a �-lactam-containing agent inhibiting a broad spectrum of pathogens,
including nonfermentative and anaerobic pathogens, is still to be identified. This is due
in part to the increase in multidrug-resistant organisms producing MBLs and/or OXA-48
carbapenemases in combination with �-lactamases of different classes and the lack of
an effective inhibitor of all the enzymes (213). Thus, it is possible that MBLs rather than
serine �-lactamases may become the predominant carbapenemases in multidrug-
resistant bacteria. It is also possible that �-lactamase-stable �-lactams, such as cefidero-
col (S-649266), or non-�-lactam-containing agents, such as plazomicin, omadacycline,
or eravacycline, will serve as reliable and safe therapeutic alternatives against the most
resistant carbapenem-resistant pathogens (214).

In conclusion, �-lactamases, some of our oldest enzymes, have emerged as perhaps
the most studied, and most troublesome, of the antibiotic resistance determinants. The
fact that many �-lactamase-encoding genes travel together on mobile elements with
transmissible resistance factors for other antibiotic classes means that resistance can
arise due to a multiplicity of selection pressures. One can anticipate that additional
unique �-lactamases with unusual properties will be identified due to the widespread
existence of these genes in both environmental and clinical sources and to continued
pressure from the use of �-lactam antibiotics. It will be up to the scientific community
to monitor their presence with detailed structural and functional studies to provide a
scientific basis for the design of new antimicrobial agents that may evade these
emerging enzymes, at least for the immediate future.
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